Министерство науки и высшего образования РФ Федеральное государственное автономное образовательное учреждение высшего образования

«СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Б1.В.06 Алгоритмы и рекурсивные функции						
наименование дисциплины (модуля) в соответствии с учебным планом						
Направление подготовки / специальность						
01.03.01 Математика						
Направленность (профиль)						
01.03.01.31 Математический анализ, алгебра и логика						
Форма обучения	очная					
Год набора	2019					

РАБОЧАЯ ПРОГРАММА ЛИСШИПЛИНЫ (МОЛУЛЯ)

Программу составили							
Кандидат физико-математических наук, Доцент, Башмаков Степан							
Игоревич							
	должность, инициалы, фамилия						

1 Цели и задачи изучения дисциплины

1.1 Цель преподавания дисциплины

Математика занимает основополагающее место в программе подготовки инженерных кадров на современном уровне.

Знание основных разделов математических дисциплин, владение математическим аппаратом и методами теории алгоритмов и рекурсивных функций позволят студентам глубже изучить не только дисциплины общенаучного цикла, связанные с будущей профессиональной деятельностью выпускников, а также развивает логическое и творческое мышление студентов, научно-исследовательский подход к решению практических задач в области профессиональной деятельности.

1.2 Задачи изучения дисциплины

В результате изучения дисциплины студент должен приобрести знания, умения и навыки, необходимые для его профессиональной деятельности в качестве математика.

Специалист должен:

Знать: основные понятия и методы теории алгоритмов и рекурсивных функций, основные алгоритмически неразрешимые проблемы.

Уметь: использовать основные понятия и методы теории алгоритмов и рекурсивных функций.

1.3 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Код и наименование индикатора достижения компетенции	Запланированные результаты обучения по дисциплине							
ПК-1: Способен применять базовые знания математических и естественных								
наук, основ программирования и информационных технологий при проведении								
исследования в конкретной области профессиональной деятельности								
ПК-1.1: Применяет	Какие исследовательские вопросы стоят в рамках							
теоретические и практические	данной дисциплины							
знания математических и	Самостоятельно освоить темы дисциплины.							
естественных наук, основ	углубляющие и детализирующие содержание							
программирования и	лекционных и семинарских занятий							
информационных технологий	Методами решения задач и проблем, входящими в							
для проведения в конкретной	рамки данной дисциплины							
области профессиональной								
деятельности								

ПК-1.2: Решает научные	Основные теории, положения, историю становления
задачи в соответствии с	и методы изучаемой дисциплины
поставленной целью и в	Анализировать факты и применять знания и методы
соответствии с выбранной	к решению задач в научно-практической
методикой	деятельности
	Навыками самостоятельного получения и анализа
	информации в изучаемой дисциплине

1.4 Особенности реализации дисциплины

Язык реализации дисциплины: Русский.

Дисциплина (модуль) реализуется без применения ЭО и ДОТ.

2. Объем дисциплины (модуля)

Вид учебной работы	Всего, зачетных единиц (акад.час)	e 1
Контактная работа с преподавателем:	1,44 (52)	
занятия лекционного типа	0,72 (26)	
практические занятия	0,72 (26)	
Самостоятельная работа обучающихся:	0,56 (20)	
курсовое проектирование (КП)	Нет	
курсовая работа (КР)	Нет	

3 Содержание дисциплины (модуля)

3.1 Разделы дисциплины и виды занятий (тематический план занятий)

	Контактная работа, ак. час.								
№ п/п	Модули, темы (разделы) дисциплины	Занятия лекционного типа		Занятия семинары и/или Практические занятия		нарского типа Лабораторные работы и/или Практикумы		Самостоятельная работа, ак. час.	
		Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС	Всего	В том числе в ЭИОС
1. M	одуль 1. Машины Тьюринга.	,	•		•	•	•		
	1. Интуитивное понятии алгоритма, основные требования к алгоритмам. Понятие машины Тьюринга. Операции над машинами. Вычислимость и правильная вычислимость по Тьюрингу. Универсальная машина. Проблема остановки и самоприменимости. Тезис Тьюринга.	8							
	2. Тема 1. Простейшие машины Тьюринга.			4					
	3. Тема 2. Вычислимость по Тьюрингу арифметических функций.			4					
	4. Модуль 1. Машины Тьюринга.							7	
2. M	одуль 2. Рекурсивные функции.	<u>'</u>	1	1	•		•	'	•

1. Примитивно рекурсивные функции. Рекурсивность операторов (операции над аргументами функции, ограниченное суммирование и мультиплицирование, кусочные функции). Возвратная и совместная рекурсия. Оператор минимизации, частично рекурсивные и общерекурсивные функции. Примитивная рекурсивность ограниченного оператора минимизации. Функции Аккермана. Нумерация пар и кортежей чисел. Универсальная ОРФ. Тезис Черча. Теорема о совпадении уточнений понятия алгоритма. Инвариантная теория алгоритмов. Основные алгоритмически неразрешимые проблемы (остановки, самоприменимости, всюду определенности и т.д.).	12					
2. Тема 3. Простейшие примитивно рекурсивные функции.		4				
3. Тема 4. Рекурсивность арифметических функций.		4				
4. Тема 5. Оператор минимизации.		4				
5. Модуль 2. Рекурсивные функции.					7	
3. Модуль 3. Приложение к теории множеств.						
1. Разрешимые, рекурсивные и рекурсивно перечислимые множества. Их свойства и взаимосвязь. Теорема Поста. Примеры неразрешимых, нерекурсивных множеств. Теорема Райса. О результативности алгоритмов. Примеры алгоритмически неразрешимых проблем.	6					
2. Тема 7. Рекурсивные предикаты и множества.		3				
3. Тема 6. Частично и общерекурсивные функции.		3				
4. Модуль 3. Приложение к теории множеств.					6	
Всего	26	26			20	

4 Учебно-методическое обеспечение дисциплины

4.1 Печатные и электронные издания:

- 1. Кузнецов О. П. Дискретная математика для инженера: монография (Санкт-Петербург: Лань).
- 2. Мальцев А. И. Алгоритмы и рекурсивные функции(Москва: Наука, Гл. ред. физ.-мат. лит.).
- 3. Рыбаков В. В., Кияткин В. Р. Элементы математической логики. Алгоритмы и рекурсивные функции: учеб.-метод. пособие [для практич. занятий для студентов напр. 010100 «Математика»](Красноярск: СФУ).
- 4. Колесников С.Г., Римацкий В.В., Созутов А.И. Дискретная математика. Элементы теории алгоритмов и теории графов: метод. указания к курсу (Красноярск: КрасГАСА).
- 5. Лавров И. А., Максимова Л. Л. Задачи по теории множеств, математической логике и теории алгоритмов(Москва: ФИЗМАТЛИТ).

4.2 Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства (программное обеспечение, на которое университет имеет лицензию, а также свободно распространяемое программное обеспечение):

1. Специальное программное обеспечение в учебном процессе по данной дисциплине не используется.

4.3 Интернет-ресурсы, включая профессиональные базы данных и информационные справочные системы:

1. Для самостоятельной работы у студентов должен быть доступ к электронному каталогу НБ СФУ.

5 Фонд оценочных средств

Оценочные средства находятся в приложении к рабочим программам дисциплин.

6 Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине (модулю)

Необходима аудитория, оборудованная доской.

Освоение дисциплины инвалидами и лицами с ограниченными возможностями здоро-вья, в зависимости от нозологий, осуществляется с использованием средств обучения общего и специального назначения.